HWRM 401 ADVANCE FLUID MECHANICS (THEORY) (02 Credit hrs)

PRE-REQUISITE: HWRM-203

LEARNING OUTCOMES:

- This course will provide an introduction to the fluid dynamics & hydraulic machinery to the students.
- The students will learn about the Flow Systems.
- They will have the knowledge about Control Structures used in fluid dynamics.
- The students will get used to Storage Structures & dimensional analysis.
- The students will be equipped with the Pumps its types & their Uses.

CONTENTS

Unit-1 Introduction

- 1.1. Introduction of fluid dynamics
- 1.2. Flow control systems
- 1.3. Characteristics of flow control system
- 1.4. Characteristics of flow control
- 1.5. Hydraulics of flow control
- 1.6. Flow control concept

Unit-II Flow Systems

- 2.1. Pipe flow system
- 2.2. Water distribution analysis,
- 2.3. Design, construction and maintenance of irrigation channels

Unit-III: Control Structures

- 3.1. Design of discharge control
- 3.2. Structures; Design of surface and underground pipe line systems
- 3.3. Design of Channels
- 3.4. Construction and maintenance of irrigation canals

Unit-IV: Storage Structures

- 4.1. Design of storage structures
- 4.2. construction and maintenance of small irrigation water storage structures.

Unit-V: Pumps Types & Uses

- 5.1. Principles, types, operations, performance and maintenance of irrigation pumps
- 5.2. Total pumping head
- 5.3. Study of characteristics curves for different pumps

Unit-VI: Selection Criteria

- 6.1. Pump selection
- 6.2. Power unit selection
- 6.3. Economic aspects of irrigation pumping machinery

ASSIGNMENTS – TYPE AND NUMBER WITH CALENDAR

It is continuous assessment. The weightage of Assignments will be 25% before and after midterm assessment. It includes:

- classroom participation,
- attendance, assignments and presentation,
- homework
- attitude and behavior,
- hands-on-activities,
- short tests, quizzes etc.

ASSESSMENT AND EXAMINATIONS

Sr. No.	Elements	Weightage	Details
1.	Mid Term Assessment	35%	It takes place at the mid-point of the semester
2.	Formative Assessment	25%	It is continuous assessment. It includes: classroom participation, attendance, assignments and presentation, homework, attitude and behavior, hands-on-activities, short tests, quizzes etc.
3.	Final Assessment	40%	It takes place at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.

RECOMMENDED TEXT BOOKS / SUGGESTED READINGS

- 1. Kay, M. (2008). Practical Hydraulics. Taylor & Francis, Abingdon, UK.
- 2. Douglas, J. F. J. M. Gasiorek, J. A. Swaffield and Lynne B. Jack. (2005). *Fluid Mechanics*. Pearson Education Limited, Edinburgh, UK.
- 3. Khurmi, R.S. (2012). Textbook of Hydraulics and Fluid Mechanics. Chand & Co Ltd., India
- 4. Subramanya, K. (2008). Flow in Open Channels. Tata McGraw-Hill.
- 5. Akan, A. O. (2006). Open Channel Hydraulics. Butterworth-Heinemann, Burlington, MA, USA.

HWRM 401 ADVANCE FLUID MECHANICS (LAB) (01 Credit hr)

PRE-REQUISITE: HWRM-203

LEARNING OUTCOME:

- This course will provide an introduction to the demonstration of various parts of Hydraulic Bench.
- The students will learn about the experimental study of laminar and turbulent Flow.
- They will have the knowledge about measurement of drag on a small sphere.
- The verification of Bernoulli's theorem will be performed by the students.
- The students will get used to calibration of Orifices by various methods.
- The students will be equipped with the calibration of venturi meter.
- They will become conversant with calibration of, rectangular and triangular notch

CONTENTS

Unit-1

1.1. Demonstration of various parts of Hydraulic Bench

Unit-II

2.1. Experimental study of laminar and turbulent Flow.

Unit-III:

3.1. Measurement of Drag on a small sphere.

Unit-IV:

4.1. Calibration of Orifices by Various Methods

Unit-V:

5.1. Calibration of Venturi meter

Unit-VI:

6.1. Calibration of. Rectangular and Triangular Notch

Unit-VII:

7.1. Verification of Bernoulli's theorem

ASSIGNMENTS – TYPE AND NUMBER WITH CALENDAR

It is continuous assessment. The weightage of Assignments will be 25% before and after midterm assessment. It includes:

- classroom participation,
- attendance, assignments and presentation,
- homework
- attitude and behavior,
- hands-on-activities,

• short tests, quizzes etc.

ASSESSMENT AND EXAMINATIONS

Sr. No.	Elements	Weightage	Details
1.	Mid Term Assessment	35%	It takes place at the mid-point of the semester
2.	Formative Assessment	25%	It is continuous assessment. It includes: classroom participation, attendance, assignments and presentation, homework, attitude and behavior, hands-on-activities, short tests, quizzes etc.
3.	Final Assessment	40%	It takes place at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.

RECOMMENDED TEXT BOOKS / SUGGESTED READINGS

- 1. Kay, M. (2008). Practical Hydraulics. Taylor & Francis, Abingdon, UK.
- 2. Douglas, J. F. J. M. Gasiorek, J. A. Swaffield and Lynne B. Jack. (2005). *Fluid Mechanics*. Pearson Education Limited, Edinburgh, UK.
- 3. Khurmi, R.S. (2012). Textbook of Hydraulics and Fluid Mechanics. Chand & Co Ltd., India
- 4. Subramanya, K. (2008). Flow in Open Channels. Tata McGraw-Hill.

Akan, A. O. (2006). Open Channel Hydraulics. Butterworth-Heinemann, Burlington, MA, USA